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Abstract Several algorithms are available in the literature for finding the entire set of
Pareto-optimal solutions of Multiobjective Linear Programmes (MOLPs). However, all of
them are based on active-set methods (simplex-like approaches). We present a different
method, based on a transformation of any MOLP into a unique lifted Semidefinite Program
(SDP), the solutions of which encode the entire set of Pareto-optimal extreme point solutions
of any MOLP. This SDP problem can be solved, among other algorithms, by interior point
methods; thus unlike an active set-method, our method provides a new approach to find the
set of Pareto-optimal solutions of MOLP.

Keywords Multiobjective Linear Programming · Semidefinite Programming ·
Polynomial optimization · Moment problem

1 Introduction

Although already more than 60 years old, Linear Programming is still nowadays one of the
most important areas of research and application in Mathematical Programming/Operations
Research. There are many different algorithms to obtain its solutions but roughly speaking
all of them can be classified into active-set methods such as primal simplex, dual simplex and
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primal-dual simplex; and interior point methods including affine-scaling, path-following, or
potential-reduction methods, among others.

Although not at the same level as standard linear programming, it is also commonly
accepted that Multiobjective Linear Programming is another very important area of activ-
ity within the optimization field. Multiobjective Optimization is motivated by the need
to consider multiple, conflicting, objectives in real world decision making problems.
Multiple objective linear programming has been a subject of research since the 1960s
for its relevance in practice and as a mathematical topic in its own right. Its develop-
ment has come in parallel to the scalar counterpart and its theory and algorithms have
been developed continuously over the years with important contributions also in the last
years. Although there are several notions of efficiency, in this paper we assume that
solving a MOLP amounts to obtain the entire set of Pareto-optimal solutions. By anal-
ogy with the scalar case, one can find in the specialized literature several algorithms to
find these solutions. In the multiobjective case there are primal simplex-like algorithms
(Steuer [27], Yu and Zeleny [30] and the references therein), primal-dual simplex-like
algorithms (Ehrgott et al. [7]) and dual simplex-like algorithms (Benson [2], Ehrgott et
al. [6]). Moreover, there are some partial approaches that use interior point methods to
approximate or to find some Pareto-optimal points (see e.g. Fliege [10,11]), but no inte-
rior point-based algorithm that finds all Pareto-optimal solutions has been proposed so
far. Quoting [6]: “No interior point algorithm that finds all efficient solutions has been
proposed”.

Due to the natural parallelism between these two areas, namely scalar and Multiobjective
Linear Programming, different authors, among them we cite Ehrgott et al. [6], wondered
whether unlike the simplex-like approaches (primal, dual or primal-dual) there would exist
an alternative approach to generate the complete Pareto-optimal set of a MOLP. This paper
gives an affirmative answer to this question.

The goal of this paper is to develop a Semidefinite Programming method to generate
the entire Pareto-optimal set of a MOLP. The interest of this research is twofold: (1) It
strengthens the parallelism between these two areas of Mathematical Programming, namely
Linear Programming and Multiobjective Linear Programming; (2) It is theoretically appealing
because it shows how to adapt some tools available nowadays in the field of polynomial
optimization [15,16] to be applied in a completely different field as is Multiobjective Linear
Programming.

From the results in this paper, we show that it is possible to find the entire set of Pareto-
optimal solutions using a SDP based approach. Indeed, we will explicitly describe an algo-
rithm to perform that task. Our approach goes beyond a trivial application of Interior Point
Methods (IPM) to solve scalarized single objective linear problems since by this method-
ology one would need to either solve an infinite number of linear problems or to identify
‘a priori’ the partition of the parametric space of scalarized problems that correspond to
extreme Pareto-optimal solutions of the MOLP. None of the above mentioned two cases are,
in general, possible. Our method consists of constructing one lifted semidefinite program
based on the original MOLP so that their solutions encode all the extreme Pareto-optimal
solutions of the MOLP. The reader may find some parallelism between this approach and
the semidefinite relaxations of combinatorial optimization problems. In both cases, the goal
is to embed the original problem in a sufficiently high dimension space so that the non-
connected solutions of the original problem can be recovered from some sort of projection
of the optimal solutions of the lifted SDP relaxation. (The reader is referred to [24] for
further details on the relationship between SDP and Integer Programming.) This recov-
ering is not always possible unless the semialgebraic set encoding the solutions satisfies
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some algebraic properties. In the case covered in this paper, such a construction is possible
and it is based on the moment matrix algorithm by Lasserre [15]. Nevertheless, the size
of the necessary SDP is not polynomial in the input size of our original MOLP. Finding
the entire Pareto-optimal set of a MOLP is, in general, NP-hard since it may be equiva-
lent to enumerate the vertices of the feasible region of the problem (see Khachiyan et al
[14]). Thus if our construction were polynomial in the input size, interior point algorithms
would prove polynomiality of the problem. Needless to say that even though our construc-
tion is explicit, we do not claim that this approach is computationally competitive with other
approaches available nowadays, as for instance the variant of the outer algorithm of Benson
developed recently in [6]. Nevertheless, it is of theoretical interest because it proposes the
first method which is not based on an active-set approach for obtaining the entire Pareto-
optimal set, it provides a completely different scheme to address this problem and develops
another pseudo-polynomial algorithm to deal with that computation. It is worth mentioning
a different framework where a similar approach is applicable: Multiobjective Polynomial
Integer Programming. We point out that the use of algebraic tools for solving Multiobjec-
tive Optimization problems is not new. The interested reader is referred to [3,4] for further
details.

The rest of the paper is organized as follows. Section 2 describes the general Mul-
tiobjective Optimization problem, together with the solution concept considered in this
paper, namely the Pareto-optimal set of solutions. In addition, it recalls the main results
that are needed for the rest of the paper. Section 3 presents the theoretical results that
imply that the entire set of Pareto-optimal solutions of a MOLP can be recovered from
the optimal solutions of a SDP in a lifted space. Here, we explicitly describe a sys-
tem of polynomial equations that encodes the entire set of Pareto-optimal extreme points
which is the basis of our next results. Section 4 reduces the problem of finding the
entire set of Pareto-optimal extreme points to project the solutions of one explicit SDP
problem. It is a feasibility problem since its objective function is constant. In addi-
tion, we also show how to extract all the, finitely many, projections of its solutions
by applying the moment matrix algorithm [15]. This construction is illustrated with an
example taken from the literature [6]. In the final section of the paper we draw some
conclusions.

2 Multiobjective Linear Programming

In this section, for the sake of completeness, we recall the main theoretical results for the
development in this paper. We begin by describing the general framework to cast the problem
to be handled. A Multiobjective Optimization Problem (MOP) consists of:

v − min( f1(x), . . . , fk(x))

s.t. x ∈ S
(MOP)

where fi : R
n → R for i = 1, . . . , k are the objective functions and S ⊆ R

n is the
feasible region. The symbol v − min means that we want to minimize all the objective
functions simultaneously. If there is no conflict between the objective functions, then, a
solution can be found where every objective function attains its optimum. In such a case,
no special methods are needed. Otherwise, first we need to state what we understand by a
solution of the above problem. It is commonly agreed that the solution concept is related
with the notion of Pareto-optimal points. The definition of Pareto-optimal solution is due to
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Pareto [22,23]. However, that name was first used by Little in [19], as recently reported by
Ehrgott [9].

Definition 1 A decision vector x∗ ∈ S is a Pareto-optimal solution for MOP if there does
not exist another decision vector x ∈ S such that fi (x) ≤ fi (x∗) for all i = 1, . . . , k and
f j (x) < f j (x∗) for at least one index j .

The set of Pareto-optimal solutions is called the Pareto-optimal set. (PO set, for short.)
If x∗ is a Pareto-optimal solution f (x∗) is said to be an efficient point of MOP.

In this paper, by solving MOP we understand finding the entire set of Pareto-optimal solu-
tions. There are some other definitions of vector optimality for Multiobjective Optimization
Problems, such as local, weak, proper or strong Pareto optimality (see [8,20]). As mentioned
in the Introduction, the motivation of this paper comes from developing a new semidefinite
problem whose solutions encode the entire set of Pareto-optimal solutions of any Multiob-
jective Linear Program. Therefore, we will restrict ourselves to consider as solution concept
for the MOLP this set, namely the set of standard Pareto-optimal solutions, although sim-
ilar approaches, to the one adopted in this paper, would be also valid for the rest of the
vector-optimality definitions in Multiobjective Optimization.

One of the main methods for describing the Pareto-optimal set of a Multiobjective
Optimization problem is by scalarization, that is, transforming the multiobjective prob-
lem into a single or a family of single-objective problems with a real-valued objective
function, depending on some parameters. This enables the use of the theory and meth-
ods of scalar optimization to be applicable to get the solutions of MOP. The importance
of these methods rests on the fact that Pareto-optimal solutions of MOP can be character-
ized, in most cases, as solutions of certain single objective optimization problems. There are
several of these scalarization methods for solving MOP (see [20]). Among them, we con-
sider the weighting method. The idea of this method is to associate each objective function
with a weighting coefficient so as to minimize the weighted sum of the objective functions.
The weighting method can be used so that the decision maker specifies a weighting vector
representing his preference information. However, this method can also be used to generate
iteratively several solutions of MOP by modifying adequately the weighting coefficients.
The success of this approach is based on the following result by Gass and Saaty [12] or
Zadeh [31].

Lemma 2 Let fi be convex for all i = 1, . . . , k and S be a convex set. Then, if x∗ ∈ S is a
Pareto-optimal solution of MOP, there exists a weighting vector λ ∈ R

k+ \ {0}, ∑k
i=1 λi = 1

such that x∗ is a solution of the following scalar problem:

min
k∑

i=1

λi fi (x)

s.t. x ∈ S.

(SP)

Note that from the above result, in particular if fi is linear for all i = 1, . . . , k and
S is a convex polyhedron, all the Pareto optimal solutions of MOP can be found by the
weighting method. Scalarization results are rather appealing since they reduce Multiob-
jective Linear Programming to single objective counterparts. The main drawback is that
one would need to solve infinitely many single objective problems. Clearly, this is not an
‘efficient’ approach.
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In this paper we are interested in solving a special class of Multiobjective Optimization
problems where all the objective functions are linear and the feasible region is described by
a set of linear inequalities, that is:

v − min Cx := (c1x, . . . , ck x)

s.t.Ax ≥ b
x ≥ 0

(MOLP)

with ci the ith row of C ∈ Q
k×n, i = 1, . . . , k, A ∈ Q

m×n and b ∈ Q
m . We assume

w.l.o.g. that A, b and C have integer coefficients (the above problem is equivalent when
multiplying by the least common multiple of the corresponding denominators), that the
system Ax ≥ b, x ≥ 0, has non-redundant inequalities and that 0 �∈ conv(c1, . . . , ck)

since otherwise all the feasible region is Pareto-optimal and the problem is trivial. Under our
assumption, the Pareto-optimal set is included in the boundary of the feasible region and it
is well-known that it is edge connected but not necessarily convex, see e.g. [27]. With these
settings we say that a Pareto-optimal solution for MOLP is an extreme point solution if it is
a vertex of the polyhedron defining the feasible region of MOLP.

In addition and in order to simplify our presentation, we will assume w.l.o.g. that the
feasible region is a polytope and that we are given redundant upper bounds on the values
of the x variables, namely we are given ubP

j such that x j ≤ ubP
j , j = 1, . . . , n. Note that

by the fact that the feasible region is a polytope these bounds can always be obtained for
sufficiently large ubP values and they are redundant.

Lemma 2 ensures that to solve MOLP it suffices to apply the above weighting method.
In doing that, this problem is transformed to a family of parametric linear programming
problems. For this reason, we recall here some results about linear programming that will be
useful in the next sections.

Consider the following pair of dual linear programming problems:

min ct x max bt u
s.t.Ax ≥ b (LP) s.t.At u ≤ c (DLP)

x ≥ 0 u ≥ 0

with A ∈ R
m×n, b ∈ R

m and c ∈ R
n .

By our assumption on the feasible region of the primal problem LP, we observe that the
dual problem can be also assumed to be bounded and that we can assume that we are also
given redundant upper bounds on the feasible values of DLP. Namely, we know ubD

i such
that ui ≤ ubD

i for all i = 1, . . . , m.
The following classical result, the proof of which can be found in [25,29], gives the

relationship between the optimal solutions of the above problems:

Lemma 3 (Strong Duality Theorem/Complementary Slackness Property) Let x∗ be a fea-
sible solution of LP and let u∗ be a feasible solution of DLP. Then, the following statements
are equivalent:

1. x∗ is an optimal solution of LP and u∗ is an optimal solution of DLP.
2. ct x∗ = bt u∗.
3. x∗ and u∗ satisfy u∗t (b − Ax∗) = 0 and (u∗t A − ct )x∗ = 0.
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In the next section we will show how the entire set of Pareto-optimal solutions
of a Multiobjective Linear Problem MOLP can be extracted from the solutions of a
SDP problem via an appropriate projection of its variables. Since IPM’s are nowa-
days among the most popular algorithms to solve SDP, thus we can conclude that inte-
rior point-based methods can be effectively used to determine the Pareto-optimal set of
MOLP.

3 A polynomial system of inequalities encoding the Pareto-optimal set of MOLP

Note that by Lemma 2, solving MOLP is equivalent to solve, for all the infinitely many
λ ∈ � := {λ ∈ R

k+ : ∑k
� λ� = 1}, the following parametric family of single objective

problems:

min
k∑

�=1

λ�c�x

s.t. Ax ≥ b
x ≥ 0.

(LPλ)

Next, for each λ ∈ �, the dual of DLPλ is:

max
m∑

j=1

u j b j

s.t. ut A ≤
k∑

i=1

λi c
i

u ≥ 0.

(DLPλ)

Hence, by Lemma 3, a solution of MOLP must be a solution of the following system of
polynomial equations/inequalities:

ut (b − Ax) = 0
(

k∑

i=1

λi c
i − ut A

)

x = 0

Ax ≥ b

ut A ≤
k∑

i=1

λi c
i

k∑

i=1
λi = 1

λ, u, x ≥ 0.

(Sys1)

Solutions of this system are triplets (x, u, λ) such that x is a Pareto-optimal solution
of MOLP, and optimal solution of DLPλ; and u is an optimal solution of DLPλ. We
will call such a triplet a ‘valid triplet’. However, we observe that the above system may
have an infinite number of solutions because there may be a continuum of solutions in
x and u since the Pareto-optimal set is a connected union of faces of the polyhedron
Ax ≥ b, x ≥ 0. Nevertheless by the edge-connectedness of the Pareto-optimal set, it
suffices to know the Pareto-optimal points that are extreme points in the feasible region
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to reconstruct the entire set (see for instance [1,5]). Therefore, our goal is to reduce the
solutions of the above system to a finite number of the original ones (extreme points)
that are enough to reconstruct the entire set of Pareto-optimal solutions. Hence, we shall
transform System Sys1 so as to characterize only extreme points of the original feasible
region.

It is worth mentioning that a similar scheme could be applied to general multiobjec-
tive convex optimization although some problems would arise. Indeed, in that case we
have to replace the use of System Sys1 by using Kuhn-Tucker optimality conditions on
the parametric family of weighted problems. The only inconvenience is that in that case
the system may have a continuum of solutions and in general, one cannot build the entire
Pareto-optimal set with a finite set of representatives, as we do in the linear case with
the extreme solutions. This implies that finiteness results cannot be obtained. Another
different framework where a similar approach is applicable is in Multiobjective Polyno-
mial Combinatorial Optimization. The interested reader is referred to [3,4] for further
details.

As it is usual, let B denote a basis of A, i.e. a full rank submatrix of A. In addition
and when there is no possible confusion, we will also use B as the set of the indices of its
columns. Analogously, N denotes the set of columns of A not in B and c�

B are the coef-
ficients of the �th objective function that corresponds to variables in the basis B. Finally,
with xB and xN , we refer to the variables corresponding to the columns in B and N ,
respectively.

Let B be an arbitrary full rank submatrix of (A, I ) (here I stands for the identity matrix
of size m × m). Let us denote by Sys-B the system:

k∑

�=1

λ�c� − ut A ≥ 0

k∑

�=1

λ�c�
B B−1 A. j −

k∑

�=1

λ�c�
j ≤ 0, ∀ j ∈ N ,

k∑

�=1
λ� = 1,

(Sys-B)

where Ai · is the i th row, A· j is the j th column and Ai j is the (i, j) element of A,
respectively.

Finally, let K be the least common multiple of all the determinants of full rank submatrices
of (A, I ) and K ′ be the least common multiple of all the determinants of full rank submatrices
of Sys-B, for all B.

The following result shows a one-to-one correspondence between the extreme Pareto-
optimal solutions of MOLP and an explicit compact semialgebraic set (described by
a set of polynomial equations/inequalities and with a finite number of solutions). This
identification will be crucial for the SDP approach presented in the next section of the
paper.

Theorem 4 If x is a Pareto-optimal solution and extreme point of the feasible region of
MOLP then K x is the projection onto the first n-components of a solution of the system
Sys2:
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h0
0(λ) :=

k∑

�=1

λ� − K ′ = 0, (1)

h0
1(x, u) := ut (K b − Ax) = 0, (2)

h2(x, u) :=
(

k∑

�=1

λ�c� − ut A

)

x = 0, (3)

g0
s (x) := As·x − K bs ≥ 0, s = 1, . . . , m, (4)

g j (u, λ) :=
k∑

�=1

λ�c�
j − ut A· j ≥ 0, j = 1, . . . , n, (5)

p j (x) :=
ubP

j K
∏

�=0

(x j − �) = 0, j = 1, . . . , n, (6)

qs(u) :=
ubD

s K ′
∏

�=0

(us − �) = 0, s = 1, . . . , m, (7)

tr (λ) :=
K ′
∏

�=0

(λr − �) = 0, r = 1, . . . , k. (8)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(Sys2)

Conversely, any of the finitely many solutions of System Sys2 induces a Pareto-optimal
solution of MOLP and all the Pareto-optimal extreme points are included among them.

Proof Let x be a Pareto-optimal extreme point solution of MOLP. Being an extreme point
of the feasible region Ax ≥ b, x ≥ 0 means that there exists a basis B which defines x

such that x =
(

xB

0

)

and xB = B−1b ≥ 0. Next, observe that if K is the least common

multiple of all the determinants of full rank submatrices of (A, I ) then, by Cramer’s rule,

K x =
(

K xB

0

)

, has integer coordinates in the range [0, ubP K ].
Besides, by Lemma 2, x must be optimal for the problem LPλ(x) for some λ(x) (Note

that this weighting coefficient may depend on x). The optimality condition of x (nonnegative
reduced cost for the non basic variables) translates into the following necessary and sufficient
condition for any valid λ(x):

k∑

�=1

λ�(x)c�
B B−1 A· j −

k∑

�=1

λ�(x)c�
j ≤ 0, ∀ j ∈ N , (9)

k∑

�=1

λ�(x) = 1. (10)
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Moreover, by Lemma 3, each pair (x, λ(x)), where λ(x) is defined by (9)–(10), has
associated an optimal extreme solution of DLPλ(x) such that (x, u(x), λ(x)) is a valid triplet,
i.e. it satisfies System Sys1. By the fact that u(x) is an extreme solution of DLPλ(x) it must
satisfy:

ut A −
k∑

�=1

λ�c� ≤ 0. (11)

Hence, there is always one of these valid triplets for x so that (u(x), λ(x)) is an extreme
solution of the system of linear inequalities defined by (9), (10) and (11). This system written
in matrix form is:

L

[
u
λ

]

:=
⎡

⎣
0 CB B−1 N − CN

At C
0 1

⎤

⎦
[

u
λ

] ≤
≤
=

⎡

⎣
0
0
1

⎤

⎦ .

Next, if (u(x), λ(x)) is an extreme solution of this system there must exists BL , a full

rank submatrix of (L , I ), such that (u(x), λ(x))t = B−1
L

⎡

⎣
0
0
1

⎤

⎦. Then, if K ′ is the least

common multiple of all determinants of full rank submatrices of (L , I ), by Cramer’s rule,
the vector (K ′u(x), K ′λ(x))has integer coordinates. Moreover, since the original variables u j

in (DLPλ(x)) are bounded above by ubD
j for all j = 1, . . . , m and λs ≤ 1 for all s ∈ 1, . . . , k

we obtain that

K ′u(x) j ∈ [0, K ′ubD
j ] ∩ Z, ∀ j = 1, . . . , m, K ′λs ∈ [0, K ′] ∩ Z, ∀s = 1, . . . , k. (12)

Now, let us consider (x, u, λ) to be one of such valid triplets characterized above, namely
(u, λ) is an extreme solution of (9), (10), (11). Recall that we have proven that this triplet
must also satisfy (12). Next, let (x̂, û, λ̂) be the vector such that x̂ = (K x1, . . . , K xn), û =
(K ′u1, . . . , , K ′um) and λ̂ = (K ′λ1, . . . , K ′λk). It follows that (x̂, û, λ̂) is a solution of
system Sys2.

Indeed, Eqs. (1), (2) and (3) follow, respectively, from the fact that (x, u, λ) is a valid
triplet and thus,

∑k
s=1 λs = 1, ut (b − Ax) = 0 and (

∑k
s=1 λscs − ut A)x = 0 (see system

Sys1). Inequality (4) follows because x must be a feasible solution of LPλ and therefore it
satisfies Ax −b ≥ 0. Inequality (5) follows from (11). Equation (6) follows because we have
proven above that K x has integer coordinates in the range [0, ubP K ]. Finally, Eqs. (7) and
(8) follow from (12).

Conversely, it follows by checking the inequalities that any solution (x, u(x), λ(x)) of
Sys2 defines a valid triplet (x/K , u(x)/K ′, λ(x)/K ′). Therefore, by Lemma 2 and 3 x/K
is a Pareto-optimal solution of MOLP. Finally, we have proven above that all Pareto-optimal
extreme point solutions of MOLP are among the solutions of the system Sys2 which concludes
the proof. �


The above transformation makes use of upper bounds to ensure that extreme points of all
systems of rational inequalities that come from feasibility and optimality conditions of valid
triplets are integer. In most cases, those bounds can be strengthened taking advantage of the
particular structure of the problems giving rise to sharper bounds. In particular if the primal,
the dual or both are integer polytopes one can take K = 1 or K ′ = 1, or both K = K ′ = 1;
respectively. Eventually, we will need only to transform the range of the lambda variables to
make them integer.
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To finish this section, we emphasize the meaning of Theorem 5. We have proven that the
entire set of Pareto-optimal extreme points is encoded in the set of solutions of one system of
polynomial inequalities, projecting the first n components of its solutions (note that this set
may include some extra Pareto-optimal solutions not being extreme points). The finiteness
of the solution sets of these systems is crucial to develop an exact method to get the entire
Pareto-optimal set, as we will show in the next section.

4 Semidefinite Programming versus Multiobjective Linear Programming

In this section we describe how to obtain the Pareto-optimal set of any MOLP by applying
tools borrowed from the theory of moments and SDP. We use standard notation in the field
(see e.g. [15]).

We denote by R[x, u, λ] the ring of real polynomials in the variables x = (x1, . . . , xn),

u = (u1, . . . , um), λ = (λ1, . . . , λk); and by R[x, u, λ]d ⊂ R[x, u, λ] the space of polyno-
mials of degree at most d ∈ N (here N denotes the set of nonnegative integers). We also denote
by B = {xαuβλγ : (α,β,γ) ∈ N

n×m×k} a canonical basis of monomials for R[x, u, λ],
where xαuβλγ = xα1

1 · · · xαn
n uβ1

1 · · · uβm
m λ

γ1
1 · · · λγk

k , for any (α,β,γ) ∈ N
n×m×k .

For any real sequence, y = (yαβγ) ⊂ R indexed in the canonical monomial
basis B, let Ly : R[x, u, λ] → R be the linear functional defined, for any f =∑

αβγ∈Nn×m×k fαβγ xαuβλγ ∈ R[x, u, λ], as Ly( f ) := ∑
αβγ∈Nn×m×k fαβγ yαβγ.

The moment matrix Md(y) of order d associated with y, has its rows and columns
indexed by (xαuβλγ) and Md(y)(αβγ,α′β′γ′) := Ly(x (α+α′)u(β+β′)λ(γ+γ′)) =
y(α+α′)(β+β′)(γ+γ′), for |αβγ|, |α′β′γ′| ≤ d.

For g := ∑
δ∈Nn×m×k gδ(xuλ)δ ∈ R[x, u, λ], the localizing matrix Md(g, y) of

order d associated with y and g, has its rows and columns indexed by ((xuλ)δ) and
Md(g, y)(αβγ,α′β′γ′) := Ly(x (α+α′)u(β+β′)λ(γ+γ′)g(xuλ)) = ∑

δ∈Nn×m×k gδ yδ + (α

+ α′)(β + β′)(γ + γ′), for |αβγ|, |α′β′γ′| ≤ d .
Let us consider J = 〈h0

0, h0
1, h2, p1, . . . , pn, q1, . . . , qm, t1, . . . , tk〉 the zero-dimensional

ideal in R[x, u, λ], generated by the polynomial equations defining the System Sys2. Note
that the ideal J to be zero dimensional is equivalent to suppose that there is a finite number
of solutions of the set of polynomial equations defining the system. This condition is ensured
by Theorem 4. This set of real solutions is denoted by V (J ) and it is usually called the variety
of J .

Depending on their parity, let 2ζ j or 2ζ j − 1 be the degree of p j , j = 1, . . . , n; 2ηs or
2ηs −1 be the degree of qs, s = 1, . . . , m and 2νr or 2νr −1 be the degree of tr , r = 1, . . . , k.
Recall that these functions were defined associated with some of the constraints that appear in
Sys2. Finally, for any symmetric matrix P by P � 0 we refer to P being positive semidefinite.

With this notation, we are in position to present our next result.

Theorem 5 The entire set of Pareto-optimal extreme point solutions of MOLP is encoded in
the optimal solutions, y = (yαβγ) ⊂ R, of the semidefinite program SD P − N∗, for some
N∗ ∈ N.

min y0 := 1 (SDP-N*)

s.t. MN∗(y) � 0,

MN∗−1(h
0
0y) = 0,

MN∗−1(h
0
1y) = 0,
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MN∗−1(h2y) = 0,

MN∗−1(g
0
s y) � 0, s = 1, . . . , m,

MN∗−1(g j y) � 0, j = 1, . . . , n,

MN∗−ζ j (p j y) = 0, j = 1, . . . , n, (13)

MN∗−ηs (qsy) = 0, s = 1, . . . , n, (14)

MN∗−νr (tr y) = 0, r = 1, . . . , k. (15)

Proof Theorem 4 proves that the entire set of Pareto-optimal extreme point solutions of
MOLP can be obtained as the projection of the solutions of System Sys2. This system is
defined by a closed, compact semi-algebraic set with finitely many feasible solutions that
by finiteness satisfies the Archimedean condition. Recall that the Archimedean condition
is equivalent to impose that for some L > 0 the quadratic polynomial L − ∑n

�=1 x2
� −∑m

j=1 u2
j − ∑n

s=1 λ2
s ≥ 0 has a representation in the quadratic module induced by the

inequalities defining the feasible region of the problem. Note that since in our case this set
is finite we can augment the above quadratic polynomial as a redundant constraints being L
large enough and the Archimedean condition trivially holds for Sys2 (see [15]). In addition,
the ideal J satisfies by Theorem 4 that the variety V (J ) is finite. Therefore, we satisfy
the hypothesis and hence we can apply [15, Theorem 6.1 Part (b)] to conclude that there
exists N∗ < +∞ so that the solutions of System Sys2 can be obtained from the solutions
y = (yαβγ)|αβγ|≤2N∗ of the SDP problem SD P − N∗. �


We note in passing that the finiteness of N∗ is explicit and it can be bounded above by
some known constants which depend on the input data. The interested reader is referred to
[21] and [26].

As a direct consequence of the equivalence between MOLP and solving a unique SDP
(Theorem 5); and the fact that SDP can be solved, among other, by interior point algorithms
we conclude the following remark.

Remark 6 All extreme Pareto-optimal solutions of MOLP can be obtained using interior
point algorithms applied to the problem SD P − N∗.

It is well-known that solving SDP problems is polynomially doable. Therefore, one may
conclude from the above reformulation that obtaining the entire Pareto-optimal set of MOLP
is polynomial. However, we cannot conclude this result from Theorem 5. The reason being
that the dimension of the SDP problem that needs to be solved is not polynomial in the size of
the original problem because N∗ is finite but its size may be exponential in n, m, k. Therefore,
the above approach only gives a pseudo-polynomial approach to obtain the Pareto-optimal
set of MOLP programs.

To conclude this section, we want to describe, based on the above results, an explicit
methodology to enumerate the real solutions of the above closed semi-algebraic set Sys2.
Note that this is equivalent to enumerate all the optimal solutions of a polynomial optimization
problem where the objective is a constant, see Theorem 5. Finally, the reader should observe
that, according to Theorem 4, the projections onto the first components of these solutions
give all the Pareto-optimal extreme point solutions of MOLP.

In order to do that we first transform w.l.o.g. Sys2 into an algebraic set, in the standard
manner, by simply adding non-positive slack variables w ∈ R

m−, z ∈ R
n− to the constraints

(4) and (5), respectively. Thus, from now on we assume that all the constraints in the SDP
problem SD P − N∗ are in equality form.
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Let us consider Ĵ = 〈h0
0, h0

1, h2, g0
1, . . . , g0

m, g1, . . . , gn, p1, . . . , pn, q1, . . . , qm, t1, . . . ,
tk〉 the zero-dimensional ideal in R[x, u, λ], generated by all the polynomial equations defin-
ing the System Sys2.

Let us consider the quotient space R[x, u, λ]/ Ĵ whose elements are the cosets [ f ] =
{ f + q : q ∈ Ĵ } for any f ∈ R[x, u, λ]. Since Ĵ is zero-dimensional, R[x, u, λ]/ Ĵ is
a finite dimensional R-vector space with the usual addition and scalar product. Further-
more, R[x, u, λ]/ Ĵ is an algebra with multiplication [ f ][g] = [ f g]. Given an arbitrary
polynomial h ∈ R[x, u, λ] define the linear multiplication operator mh : R[x, u, λ]/ Ĵ →
R[x, u, λ]/ Ĵ , mh([ f ]) = [ f h] for any f ∈ R[x, u, λ]. If B Ĵ is a basis of R[x, u, λ]/ Ĵ ,

let M̂h be the multiplication matrix associated with the linear operator mh expressed in
the basis B Ĵ . Multiplication matrices are instrumental for obtaining the points in V ( Ĵ ).

Indeed, if B Ĵ = {b1, . . . , bN } for each v ∈ V ( Ĵ ) let rv := (b�(v))1≤�≤N ∈ R
N be the

evaluation of the point v by the polynomials that define the basis B Ĵ then Theorem 6.2

in [15] states that for any polynomial h ∈ R[x, u, λ] the set {h(v) : v ∈ V ( Ĵ )} is the
set of eigenvalues of the multiplication matrix M̂h and M̂hrv = h(v)rv for all v ∈ V ( Ĵ ).
The reader may observe that for adequate choices of polynomials h := x�, � = 1, . . . , n,
h := u j , j = 1, . . . , m and h := λs, s = 1, . . . , k one would get the coordinates of all the
points v = (x, u, λ) ∈ V ( Ĵ ).

Let d = max{max j=1...n ζ j , maxs=1...m ηs} be the maximum half degree of the polyno-
mials defining System Sys2. Finally, let us denote by R(SD P − N∗) the feasible region of
Problem SD P − N∗.

The above concepts allows us to apply the moment matrix algorithm [15, Algorithm 6.1]
to the variety V ( Ĵ ). See [17] for further details.

Theorem 7 For N∗ large enough, there exists d ≤ t ≤ N∗ such that:

rankMt (y) = rankMt−d(y) = |V ( Ĵ )|, y = (yαβγ)|αβγ|≤2N∗ ∈ R(SD P − N∗).

Moreover, one can obtain the coordinates of all (x, u, λ) ∈ V ( Ĵ ), as the eigenvalues of
multiplication matrices M̂x�

, M̂u j , M̂λs for all � = 1, . . . , n, j = 1, . . . , m, s = 1 . . . , k.

Proof First of all, we observe that for any N , SD P − N is a SDP relaxation of Sys2 based
on the Problem of the Moment approach [15]. Thus, for any N the solutions of SD P − N ,
namely (yαβγ)|αβγ|≤2N , are moments of finite probability measures with support contained
in the feasible solutions of System Sys2 [15]. This system is defined by a closed, compact
semi-algebraic set with finitely many feasible solutions (see Theorem 4) that by finiteness
satisfies the Archimedean condition. Hence, we are under the hypothesis of Theorem [15,
Theorem 6.1] (System Sys2 satisfies Archimedean condition and it has a finite number of
feasible solutions) therefore for sufficiently large N∗ the relaxation SD P − N∗ is exact and
rank(MN∗(y)) = rank(MN∗−d(y)).

Next, we translate the condition that we look for measures which give positive probability
to all points in V ( Ĵ ), on the variables of Problem SD P − N∗. In this way we shall get the
points in V ( Ĵ ) from the solutions y of that problem after some manipulation. This extrac-
tion can be done in our case, since V ( Ĵ ) is finite. Note that we are under the hypothesis of
[15, Theorem 6.5] since the range of the moment matrix MN∗(y) in any generic solution
of SD P − N∗ is maximal. Indeed, among all the finite probability measures defined on
the support of the feasible set, namely V ( Ĵ ), those assigning positive probability to all the
solutions of V ( Ĵ ) give maximal range to the moment matrix MN∗(y). Recall that the range
of a moment matrix is equal to the number of optimal solutions of the original problem
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that are identified by the probability measure defined by the moment variables y. Obvi-
ously, this number cannot be greater than the cardinality of V ( Ĵ ) and it is attained in any
generic solution. (The interested reader is referred to Section 6.3 in [15] for a non technical
explanation).

Therefore, applying Theorem [15, Theorem 6.5] there exist d ≤ t ≤ N∗ (eventually t
could be equal to N∗) such that the rank condition rankMt (y) = rankMt−d(y) = |V ( Ĵ )|
holds.

Now, if the rank condition holds Theorem 6.5 in [15] states that the ideal J0 :=
〈K erMt (y)〉 (the ideal generated by the kernel of the matrix Mt (y)) coincides with the
vanishing ideal I (V ( Ĵ )) := {h : h(v) = 0, ∀ v ∈ V ( Ĵ )} of the variety V ( Ĵ ) and any basis
of the column space of Mt−1(y) is a basis of R[x, u, λ]/J0.

Now, using that basis we can construct, in the vector space R[x, u, λ]/J0, the linear multi-
plication matrices M̂x�

, M̂u j , M̂λs for all �, j, s, from the matrix Mt−1(y). This construction

gives us, according to Theorem 6.2 in [15], the coordinates of all the points (x, u, λ) ∈ V ( Ĵ )

as the eigenvalues of the above mentioned multiplication matrices M̂x�
, M̂u j , M̂λs for all

�, j, s.
Moreover, obtaining the solutions in V ( Ĵ ) can be effectively implemented by using the

moment matrix algorithm as described in [15, Algorithm 6.1]. (The reader is referred to
[17,18] for further details on the moment matrix algorithm.) �


The importance of Theorem 7 stems from the fact that it provides a constructive method to
obtain the Pareto-optimal solutions that are extreme points of the feasible region of MOLP.
It states that there exists a finite relaxation order N∗ such that the problem SD P − N∗
satisfies the rank condition and so all the Pareto-optimal extreme point solutions can be
obtained from the moment matrices of SD P − N∗ using the extraction algorithm. This
can be seen as projecting the solutions of SD P − N∗ onto the original x, u, λ variables
of MOLP. This methodology is for instance implemented in the open source software
Gloptipoly 3 [13].

The following example, that appears in [6], illustrates the methodology proposed in this
paper.

Example 8 Consider problem MOLP with the data:

C =
(

1 0
0 1

)

, A =

⎛

⎜
⎜
⎜
⎜
⎝

2 1
1 1
1 2
−1 0
0 −1

⎞

⎟
⎟
⎟
⎟
⎠

, b =

⎛

⎜
⎜
⎜
⎜
⎝

4
3
4
−5
−5

⎞

⎟
⎟
⎟
⎟
⎠

.

Observe that the last two constraints refer to the upper bound constraints x1 ≤ 5 and
x2 ≤ 5, so they are not considered as rows of the matrix A but as the sets of upper
bounds in the polynomial constraints p j (x) in Theorem 4. Moreover, by the form of DL Pλ

we can use ubD
i = 1 for i = 1, 2, 3 as valid upper bounds for the variables in the dual

problems.
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The System (Sys2) is:

(Sys2)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h0
0 = λ1 + λ2 − 6 = 0

h0
1 = u1(24 − 2x1 − x2) + u2(18 − x1 − x2) + u3(24 − x1 − 2x2) = 0

h1
2 = (−2u1 − u2 − u3 + λ1)x1 + (−u1 − u2 − 2u3 + λ2)x2 = 0

g0
1 = 2x1 + x2 − 24 ≥ 0
g0

2 = x1 + x2 − 18 ≥ 0
g0

3 = x1 + 2x2 − 24 ≥ 0
g1

1 = −2u1 − u2 − u3 + λ1 ≥ 0
g1

2 = −u1 − u2 − 2u3 + λ2 ≥ 0
p1 = ∏30

�=1(x1 − �) = 0
p2 = ∏30

�=1(x2 − �) = 0
q1 = ∏6

�=1(u1 − �) = 0
q2 = ∏6

�=1(u2 − �) = 0
q3 = ∏6

�=1(u3 − �) = 0
t1 = ∏6

�=1(λ1 − �) = 0
t2 = ∏6

�=1(λ2 − �) = 0

We use Gloptipoly 3 [13] to formulate the semidefinite problems of Theorem 5
induced from the above systems and SEDUMI 1.3 [28] as the SDP solver. According
to Theorem 5, we must solve one semidefinite problem for each relaxation order N∗. The
greatest common divisor of the determinants of all the full rank submatrices of A is K = 6.
Analogously, we get that K ′ = 6 and for N∗ = 4, the rank condition of Theorem 7 is satisfied,
i.e. rankM4(x, u, λ) = rankM1(x, μ, λ) = 6, and we extract the following solutions of
SD P − N∗:

Solutions

x u λ

Sol. #1 (6, 12) (2, 0, 0) (4, 2)

Sol. #2 (0, 24) (2, 0, 0) (4, 2)

Sol. # 3 (6, 12) (0, 3, 0) (3, 3)

Sol. # 4 (12, 6) (0, 3, 0) (3, 3)

Sol. # 5 (12, 6) (0, 0, 3) (3, 3)

Sol. # 6 (24, 0) (0, 0, 2) (2, 4)

Note that the number of moments involved in the SDP problem that had to be solved was
6435. In this problem, the moment matrix MN∗(x, u, λ) has size 330 × 330.

Thus, projecting the set of extracted solutions onto the x-coordinates and divid-
ing by K , we get the set of extreme Pareto-optimal solutions of the problem, X E =
{(4, 0), (1, 2), (2, 1), (0, 4)}. These Pareto-optimal solutions and the complete Pareto-
optimal set are shown in Fig. 1 (black dots and black segments, respectively).

5 Conclusions

Due to the similarities between standard linear programming and Multiobjective Linear
Programming several authors wondered whether it would exist a non-active-set method valid
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Fig. 1 Pareto-optimal set of Example 8

to find the entire set of Pareto-optimal solutions of MOLP. This paper answers positively this
question presenting a SDP approach to find that set. Our approach is constructive and we
give an explicit SDP problem the solutions of which encode all the Pareto-optimal extreme
points of MOLP. Moreover, we show how all these points can be obtained by applying the
so called moment matrix algorithm (see [15,18]). However, although our construction is
explicit, we do not claim that it is computationally competitive with other currently available
methods. The main drawback is the size of the SDP problem to be considered which is not
polynomial in the input size of MOLP. The importance of our results is mainly theoretical
because they show, as expected, the close relationship between scalar and Multiobjective
Linear Programming with regards to the solutions techniques. In addition, our results also
show the power of some techniques developed in the field of polynomial optimization [15,16]
to be applied in apparently different areas such as Multiobjective Optimization.
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